Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 by electron flow from ferredoxin FDX2.

Identifieur interne : 000045 ( Main/Exploration ); précédent : 000044; suivant : 000046

Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 by electron flow from ferredoxin FDX2.

Auteurs : Benjamin Dennis Weiler [Allemagne] ; Marie-Christin Brück [Allemagne] ; Isabell Kothe [Allemagne] ; Eckhard Bill [Allemagne] ; Roland Lill [Allemagne] ; Ulrich Mühlenhoff [Allemagne]

Source :

RBID : pubmed:32817474

Descripteurs français

English descriptors

Abstract

The essential process of iron-sulfur (Fe/S) cluster assembly (ISC) in mitochondria occurs in three major phases. First, [2Fe-2S] clusters are synthesized on the scaffold protein ISCU2; second, these clusters are transferred to the monothiol glutaredoxin GLRX5 by an Hsp70 system followed by insertion into [2Fe-2S] apoproteins; third, [4Fe-4S] clusters are formed involving the ISC proteins ISCA1-ISCA2-IBA57 followed by target-specific apoprotein insertion. The third phase is poorly characterized biochemically, because previous in vitro assembly reactions involved artificial reductants and lacked at least one of the in vivo-identified ISC components. Here, we reconstituted the maturation of mitochondrial [4Fe-4S] aconitase without artificial reductants and verified the [2Fe-2S]-containing GLRX5 as cluster donor. The process required all components known from in vivo studies (i.e., ISCA1-ISCA2-IBA57), yet surprisingly also depended on mitochondrial ferredoxin FDX2 and its NADPH-coupled reductase FDXR. Electrons from FDX2 catalyze the reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 in an IBA57-dependent fashion. This previously unidentified electron transfer was occluded during previous in vivo studies due to the earlier FDX2 requirement for [2Fe-2S] cluster synthesis on ISCU2. The FDX2 function is specific, because neither FDX1, a mitochondrial ferredoxin involved in steroid production, nor other cellular reducing systems, supported maturation. In contrast to ISC factor-assisted [4Fe-4S] protein assembly, [2Fe-2S] cluster transfer from GLRX5 to [2Fe-2S] apoproteins occurred spontaneously within seconds, clearly distinguishing the mechanisms of [2Fe-2S] and [4Fe-4S] protein maturation. Our study defines the physiologically relevant mechanistic action of late-acting ISC factors in mitochondrial [4Fe-4S] cluster synthesis, trafficking, and apoprotein insertion.

DOI: 10.1073/pnas.2003982117
PubMed: 32817474
PubMed Central: PMC7456137


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 by electron flow from ferredoxin FDX2.</title>
<author>
<name sortKey="Weiler, Benjamin Dennis" sort="Weiler, Benjamin Dennis" uniqKey="Weiler B" first="Benjamin Dennis" last="Weiler">Benjamin Dennis Weiler</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bruck, Marie Christin" sort="Bruck, Marie Christin" uniqKey="Bruck M" first="Marie-Christin" last="Brück">Marie-Christin Brück</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kothe, Isabell" sort="Kothe, Isabell" uniqKey="Kothe I" first="Isabell" last="Kothe">Isabell Kothe</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bill, Eckhard" sort="Bill, Eckhard" uniqKey="Bill E" first="Eckhard" last="Bill">Eckhard Bill</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim an der Ruhr, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim an der Ruhr</wicri:regionArea>
<wicri:noRegion>45470 Mülheim an der Ruhr</wicri:noRegion>
<wicri:noRegion>45470 Mülheim an der Ruhr</wicri:noRegion>
<wicri:noRegion>45470 Mülheim an der Ruhr</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany; Lill@staff.uni-marburg.de muehlenh@staff.uni-marburg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>LOEWE Zentrum für Synthetische Mikrobiologie SYNMIKRO, 35043 Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>LOEWE Zentrum für Synthetische Mikrobiologie SYNMIKRO, 35043 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany; Lill@staff.uni-marburg.de muehlenh@staff.uni-marburg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32817474</idno>
<idno type="pmid">32817474</idno>
<idno type="doi">10.1073/pnas.2003982117</idno>
<idno type="pmc">PMC7456137</idno>
<idno type="wicri:Area/Main/Corpus">000033</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000033</idno>
<idno type="wicri:Area/Main/Curation">000033</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000033</idno>
<idno type="wicri:Area/Main/Exploration">000033</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 by electron flow from ferredoxin FDX2.</title>
<author>
<name sortKey="Weiler, Benjamin Dennis" sort="Weiler, Benjamin Dennis" uniqKey="Weiler B" first="Benjamin Dennis" last="Weiler">Benjamin Dennis Weiler</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bruck, Marie Christin" sort="Bruck, Marie Christin" uniqKey="Bruck M" first="Marie-Christin" last="Brück">Marie-Christin Brück</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kothe, Isabell" sort="Kothe, Isabell" uniqKey="Kothe I" first="Isabell" last="Kothe">Isabell Kothe</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bill, Eckhard" sort="Bill, Eckhard" uniqKey="Bill E" first="Eckhard" last="Bill">Eckhard Bill</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim an der Ruhr, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim an der Ruhr</wicri:regionArea>
<wicri:noRegion>45470 Mülheim an der Ruhr</wicri:noRegion>
<wicri:noRegion>45470 Mülheim an der Ruhr</wicri:noRegion>
<wicri:noRegion>45470 Mülheim an der Ruhr</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany; Lill@staff.uni-marburg.de muehlenh@staff.uni-marburg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>LOEWE Zentrum für Synthetische Mikrobiologie SYNMIKRO, 35043 Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>LOEWE Zentrum für Synthetische Mikrobiologie SYNMIKRO, 35043 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany; Lill@staff.uni-marburg.de muehlenh@staff.uni-marburg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aconitate Hydratase (metabolism)</term>
<term>Chaetomium (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Mitochondria (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aconitate hydratase (métabolisme)</term>
<term>Chaetomium (MeSH)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Mitochondries (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aconitate Hydratase</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aconitate hydratase</term>
<term>Ferrosulfoprotéines</term>
<term>Mitochondries</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chaetomium</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chaetomium</term>
<term>Humains</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The essential process of iron-sulfur (Fe/S) cluster assembly (ISC) in mitochondria occurs in three major phases. First, [2Fe-2S] clusters are synthesized on the scaffold protein ISCU2; second, these clusters are transferred to the monothiol glutaredoxin GLRX5 by an Hsp70 system followed by insertion into [2Fe-2S] apoproteins; third, [4Fe-4S] clusters are formed involving the ISC proteins ISCA1-ISCA2-IBA57 followed by target-specific apoprotein insertion. The third phase is poorly characterized biochemically, because previous in vitro assembly reactions involved artificial reductants and lacked at least one of the in vivo-identified ISC components. Here, we reconstituted the maturation of mitochondrial [4Fe-4S] aconitase without artificial reductants and verified the [2Fe-2S]-containing GLRX5 as cluster donor. The process required all components known from in vivo studies (i.e., ISCA1-ISCA2-IBA57), yet surprisingly also depended on mitochondrial ferredoxin FDX2 and its NADPH-coupled reductase FDXR. Electrons from FDX2 catalyze the reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 in an IBA57-dependent fashion. This previously unidentified electron transfer was occluded during previous in vivo studies due to the earlier FDX2 requirement for [2Fe-2S] cluster synthesis on ISCU2. The FDX2 function is specific, because neither FDX1, a mitochondrial ferredoxin involved in steroid production, nor other cellular reducing systems, supported maturation. In contrast to ISC factor-assisted [4Fe-4S] protein assembly, [2Fe-2S] cluster transfer from GLRX5 to [2Fe-2S] apoproteins occurred spontaneously within seconds, clearly distinguishing the mechanisms of [2Fe-2S] and [4Fe-4S] protein maturation. Our study defines the physiologically relevant mechanistic action of late-acting ISC factors in mitochondrial [4Fe-4S] cluster synthesis, trafficking, and apoprotein insertion.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32817474</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>117</Volume>
<Issue>34</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 by electron flow from ferredoxin FDX2.</ArticleTitle>
<Pagination>
<MedlinePgn>20555-20565</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.2003982117</ELocationID>
<Abstract>
<AbstractText>The essential process of iron-sulfur (Fe/S) cluster assembly (ISC) in mitochondria occurs in three major phases. First, [2Fe-2S] clusters are synthesized on the scaffold protein ISCU2; second, these clusters are transferred to the monothiol glutaredoxin GLRX5 by an Hsp70 system followed by insertion into [2Fe-2S] apoproteins; third, [4Fe-4S] clusters are formed involving the ISC proteins ISCA1-ISCA2-IBA57 followed by target-specific apoprotein insertion. The third phase is poorly characterized biochemically, because previous in vitro assembly reactions involved artificial reductants and lacked at least one of the in vivo-identified ISC components. Here, we reconstituted the maturation of mitochondrial [4Fe-4S] aconitase without artificial reductants and verified the [2Fe-2S]-containing GLRX5 as cluster donor. The process required all components known from in vivo studies (i.e., ISCA1-ISCA2-IBA57), yet surprisingly also depended on mitochondrial ferredoxin FDX2 and its NADPH-coupled reductase FDXR. Electrons from FDX2 catalyze the reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 in an IBA57-dependent fashion. This previously unidentified electron transfer was occluded during previous in vivo studies due to the earlier FDX2 requirement for [2Fe-2S] cluster synthesis on ISCU2. The FDX2 function is specific, because neither FDX1, a mitochondrial ferredoxin involved in steroid production, nor other cellular reducing systems, supported maturation. In contrast to ISC factor-assisted [4Fe-4S] protein assembly, [2Fe-2S] cluster transfer from GLRX5 to [2Fe-2S] apoproteins occurred spontaneously within seconds, clearly distinguishing the mechanisms of [2Fe-2S] and [4Fe-4S] protein maturation. Our study defines the physiologically relevant mechanistic action of late-acting ISC factors in mitochondrial [4Fe-4S] cluster synthesis, trafficking, and apoprotein insertion.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Weiler</LastName>
<ForeName>Benjamin Dennis</ForeName>
<Initials>BD</Initials>
<AffiliationInfo>
<Affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brück</LastName>
<ForeName>Marie-Christin</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kothe</LastName>
<ForeName>Isabell</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bill</LastName>
<ForeName>Eckhard</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000-0001-9138-3964</Identifier>
<AffiliationInfo>
<Affiliation>Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim an der Ruhr, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lill</LastName>
<ForeName>Roland</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0002-8345-6518</Identifier>
<AffiliationInfo>
<Affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany; Lill@staff.uni-marburg.de muehlenh@staff.uni-marburg.de.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>LOEWE Zentrum für Synthetische Mikrobiologie SYNMIKRO, 35043 Marburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mühlenhoff</LastName>
<ForeName>Ulrich</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany; Lill@staff.uni-marburg.de muehlenh@staff.uni-marburg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.1.3</RegistryNumber>
<NameOfSubstance UI="D000154">Aconitate Hydratase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000154" MajorTopicYN="N">Aconitate Hydratase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002597" MajorTopicYN="N">Chaetomium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">cellular thiol-redox systems</Keyword>
<Keyword MajorTopicYN="Y">iron-sulfur cluster</Keyword>
<Keyword MajorTopicYN="Y">late-acting ISC factors</Keyword>
<Keyword MajorTopicYN="Y">monothiol glutaredoxin</Keyword>
</KeywordList>
<CoiStatement>The authors declare no competing interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>02</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32817474</ArticleId>
<ArticleId IdType="pii">2003982117</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.2003982117</ArticleId>
<ArticleId IdType="pmc">PMC7456137</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2019 Aug 8;10(1):3566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31395877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 May 16;283(20):14092-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18339629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Oct 16;51(41):8071-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23003323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2013 Oct 9;135(40):15153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24032439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 2001;65:37-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11381604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 2015 Feb 17;84(7):659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25609768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxidants (Basel). 2019 Mar 18;8(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30889816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 Nov;30(4):895-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10094636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 18;436(7053):1035-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 Sep 25;258(18):11098-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6309829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2010 May;120(5):1749-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20364084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2017 Nov 20;27(15):1235-1251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28537421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Feb 12;392(3):467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20085751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2020 Jun;287(11):2312-2327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31724821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Jun;24(12):1830-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23615440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Aug 4;292(31):12754-12763</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28615445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Dec 12;9(1):18986</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31831856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1395-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25498248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2013 Oct 1;455(1):57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23800229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10468587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Aug;11(8):579-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20651708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Oct 31;5:5013</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25358379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2020 Jun 20;89:471-499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31935115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 17;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27532772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1528-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2013 Sep 24;52(38):6633-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24032747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 2007;80:261-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17445699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Oct 16;51(41):8056-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23003563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Mar;28(5):1851-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18086897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2018 Oct 15;27(20):3650</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30113620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Oct;86(1):155-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jun 12;46(23):6804-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jun 12;46(23):6812-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2016 Dec 6;24(12):2080-2091</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27818104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2011 Oct 7;89(4):486-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21944046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Jan 15;433(2):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2018 Oct 31;140(43):14401-14412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30269484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Mar;1827(3):455-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23298813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2020 Apr;55:34-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31918395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2010 Dec;11(8):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21235502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2018 Jan;285(2):391-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29211945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2018 Jun;23(4):545-566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29349662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 17;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27532773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1823(2):484-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25541283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2018 Jan 24;10(1):9-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29019354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Nov 3;8(1):1287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29097656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11775-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Dec 2;286(48):41205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21987576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 May 11;8:15124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28492233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mutat. 2018 Apr;39(4):537-549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29297947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Genet. 2015 Mar;52(3):186-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25539947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1969 Nov;44(11):1511-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2018 Jan 24;10(1):49-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29219157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2013 Jul 1;22(13):2590-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23462291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2014 Aug 5;53(30):4904-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24971490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1513-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2019 Feb 1;205(2):103-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30677521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Aug 15;110(4):1353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2018;599:197-226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29746240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2018;599:227-263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29746242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Sep 15;22(18):4815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1050-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10655482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Nov 19;136(46):16240-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25347204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2011 Nov 11;89(5):656-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22077971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Apr;23(7):1157-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22323289</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Giessen</li>
<li>Hesse (Land)</li>
</region>
<settlement>
<li>Marbourg</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Hesse (Land)">
<name sortKey="Weiler, Benjamin Dennis" sort="Weiler, Benjamin Dennis" uniqKey="Weiler B" first="Benjamin Dennis" last="Weiler">Benjamin Dennis Weiler</name>
</region>
<name sortKey="Bill, Eckhard" sort="Bill, Eckhard" uniqKey="Bill E" first="Eckhard" last="Bill">Eckhard Bill</name>
<name sortKey="Bruck, Marie Christin" sort="Bruck, Marie Christin" uniqKey="Bruck M" first="Marie-Christin" last="Brück">Marie-Christin Brück</name>
<name sortKey="Kothe, Isabell" sort="Kothe, Isabell" uniqKey="Kothe I" first="Isabell" last="Kothe">Isabell Kothe</name>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000045 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000045 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32817474
   |texte=   Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 by electron flow from ferredoxin FDX2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32817474" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020